
PHYSICAL REVIEW E, VOLUME 64, 027103
Area-slope relation in a simple erosion model

Hajime Inaoka
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-8656, Japan

~Received 8 March 2001; published 19 July 2001!

We discuss area-slope relation of a landform evolved by a simple lattice model of an erosion process.
Observing a steady state of the model, where river networks on the surface are stationary, we present the
relation between the power exponent of the area-slope relation and the parameters of the erosion process of the
model. We show how to determine the parameters of the erosion process from observations of landform by
making use of the area-slope relation. This method may be useful for morphological simulations of the
landforms.
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Since Mandelbrot’s discovery of the concept of fract
@1#, it has been recognized that there are many fractals in
nature. One of the typical examples of the fractal structu
observed in the nature is a pattern of a river network. Ma
years ago, even before the discovery of the concept of f
tals, the fractality of river networks has been recognized
hydrologists; the self-similarity of river networks was d
scribed as Horton’s laws@2#, and the self-affinity of indi-
vidual river basins was formulated as Hack’s law@3#. In
recent years, the fractality of river networks has been con
ered as a problem of statistical physics, and its power law
the drainage basin area distribution has attracted many ph
cists’ interest. So, physically motivated models of river n
work formation have been studied to explain the draina
basin area distribution: Sheidegger’s river model@4# that was
studied by Takayasuet al. as a model of a process of aggr
gation with injection@5#, a model based on self-avoidin
random walk@6# that was originally proposed by Leopol
and Langbein@7#, a model of water erosion@8,9#, a minimum
energy dissipation model@10,11#, and so on.

A system with fractality presents some power-law relat
of physical quantities in general. In the case of the riv
networks, area-slope relation is one of the examples. H
and other investigators pointed out power-law relation
tween the drainage basin areaS and the mean slopedH of
individual river basins such as

dHSa5const ~1!

with a scaling exponenta ranging 0.4–0.7@3,12,13#. Will-
gooseet al. assumed a state of dynamic equilibrium of lan
form evolution, where the tectonic uplift and the erosion
the water flow on the surface are balance, and explained
relation of Eq.~1! by the effect of erosion@14#. They also
showed that their numerical model of landform formati
reproduced the relation, Eq.~1!. Sinclair and Ball also dis-
cussed the relation between the erosion process withou
fect of tectonic uplift and the area-slope relation@15#. The
author and coworkers proposed a simple erosion mode
river network formation to reproduce the power-law draina
basin area distribution@9#. In this paper, we discuss the are
slope relation in our erosion model on a land with no tecto
uplift, and present the relation between the parameters in
model and the scaling exponenta. We also discuss a tech
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nique to determine the parameters of the erosion proc
from observations of landform by making use of the are
slope relation.

Our erosion model is defined on a two-dimensional l
tice. The model is composed of two elements assigned
each lattice site (x,y): the local height of the landh(x,y;t)
and the water flow intensitys(x,y;t). For a given initial
landform h(x,y;0) the evolution of the landform is per
formed by repeating the following procedures. The time
discretized in numerical simulations and the following pr
cedures form a time unit called time step.

~1! Rain fall. For each lattice site (x,y), the water flow
intensitys(x,y;t) is increased by a constants1.

~2! Water flow. The water flow intensity on the site (x,y),
s(x,y;t), is transported to one of its nearest neighbor si
(x8,y8) that has the lowest value of the local height amo
the nearest neighbor sites of the site (x,y). The new water
flow intensity of the site (x,y), s(x,y;t11), is determined
by the sum of the water flow intensity transported from t
nearest neighbor sites.

~3! Water erosion. The height of the site (x,y), h(x,y;t),
is decreased by the effect of the transportation of the w
flow intensitys(x,y;t). The new height is calculated by

h~x,y;t11!5h~x,y;t !2Cdh~x,y;t !
J~x,y;t !

11J~x,y;t !
, ~2!

whereC is a constant anddh(x,y;t) is the height difference

dh~x,y;t !5h~x,y;t !2h~x8,y8;t !, ~3!

respectively, andJ is a water power defined by

J~x,y;t ![@dh~x,y;t !#a21@s~x,y;t !#b, ~4!

wherea andb are parameters governing the erosion proce
Namely, our model describes a simplified water eros

process with the effects of spatially and temporally unifo
rain fall, conservation of water, uniform geological structu
of the land, etc. In the process of the water flow, proced
~2!, a lake is formed at the site (x,y) when h(x,y;t)
<h(x8,y8;t). But, in this paper, the formation of lakes is n
important in the discussion. The details of the model
discussed in our previous papers@9#. Numerical simulations
in this paper are conducted on a triangular lattice of s
©2001 The American Physical Society03-1
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2003200. The system is connected by a periodic bound
condition in x direction. A line of sinks, where the loca
height is zero and the water is completely drained, is pla
at y50. On the other hand, a high wall is placed aty
5200 to prevent the water in the system from flowing out
the system from the upper edge. All the water in the sys
is eventually drained at the sink sites. The initial condition
the systemh(x,y;0) is set 2000.0 with a slight white nois
ranging 0.0–0.1. The parameters ares151025 and C50.5,
respectively.

By drawing a link connecting (x,y) and (x8,y8) for each
site, we get complex, branching river networks on the la
surface. Each link shows the path of the water transporta
on each site. Since the surface of the landform in the mo
is always exposed to the effect of the erosion, it is natura
expect that the link of a site often changes its direction as
configuration of the height of the neighboring sites chang
However, it was shown that, after sufficiently long evoluti
time, the system reaches to a kind of steady state where
in the system hardly change their direction. Namely, a ri
network hardly changes its shape while the surface of
land is under the effect of the erosion. In this steady st
because of the conservation of the water, the water flow
tensitys(x,y;t) of a site (x,y) becomes proportional to th
drainage basin area of the site (x,y), where the drainage
basin area is defined by the number of the upstream link
the site (x,y). We discuss the area-slope relation of the riv
basins in this steady state.

SinceJ/(11J) can be approximated toJ whenJ is small,
Eq. ~2! with the effect of the tectonic uplift can be rewritte
as

]h~x,y;t !

]t
52C@dh~x,y;t !#a@s~x,y;t !#b. ~5!

When there is no tectonic uplift, we expect that the heigh
the landform decreases monotonically. As we mentioned
fore, the system reaches to a steady state where river
works on the surface hardly change their shapes after
evolution time even under the effect of the erosion proce
So, we assume that the landformh(x,y;t) under a steady
state is described by

h~x,y;t !5 f ~ t !h0~x,y!, ~6!

where f (t) is a monotonically decreasing function with tim
and h0(x,y) is a time-independent, spatial function. Sin
the river networks on the surface are determined only by
function h0(x,y), no link changes its direction by the effe
of erosion under this assumption. We further assume
form of the functionf (t) as

f ~ t !5ct2g ~7!

with a constantc and a constant exponentg. Substituting Eq.
~6! and Eq.~7! into Eq. ~5!, we get

t2g21h0~x,y!5const3t2ag@dh0~x,y!#a@s0~x,y!#b, ~8!
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where dh0(x,y)5h0(x,y)2h0(x8,y8) and s0(x,y) is the
drainage basin area that is proportional to the water fl
intensity under the steady state, respectively. Since the ti
dependent parts of both the sides of Eq.~8! should follow an
identical function form, we get

g5
1

a21
~9!

and

dh0~x,y!@s0~x,y!#b/a5const3@h0~x,y!#1/a. ~10!

Starting from a similar assumption to Eq.~6!, Sinclair and
Ball derived a similar relation to Eq.~10! and discussed an
area-slope relation in a vector form@15#.

The relation Eq.~10! is similar to Eq.~1! and the scaling
exponenta can be related to the parameters of erosion a

a5
b

a
. ~11!

But it means thatdh0(x,y)@s0(x,y)#b/a is constant only
when it is observed on a contour line of specific heig
because@h0(x,y)#1/a appears in the right side of Eq.~10!.
This may be considered as a drawback of Eq.~10!. However,
when we attempt to determine the parametersa andb of the
evolution equation by observing an existent landform, E
~10! is useful. By observingdh0(x,y) ands0(x,y) on a spe-
cific contour line, we can calculate the scaling exponena
5b/a. Once we get the scaling exponenta we can calculate
the left side of Eq.~10! at any point on the surface of th
land. And it is a power-law function of the height with ex
ponent 1/a. So, by these two exponentsa5b/a and 1/a, we
can get the full set of the parameters of the landform evo
tion a andb. Though the original area-slope relation, Eq.~1!,
can determine the scaling exponenta from observations of
real topographical data, it cannot fully determine the para
eters of landform evolution since the exponenta only gives
the ratio of the parametersa andb.

Hereafter, we check the validity of the above discuss
by numerical simulations. In the following discussion, w
perform numerical simulations for various combinations
the parametersa and b. The ranges of the parameters a
1.5<a<3.0 and 0.5<b<2.0, respectively. The numerica
data in the following discussion are, for the most part,
results of the simulations with 105 time steps. For system
with most of the combinations of the parameters, the evo
tion time t5105 is long enough to reach their steady stat
In such cases we can regardh(x,y;105) ash0(x,y) by prop-
erly adjusting the coefficient in Eq.~7!. The water flow in-
tensity s(x,y;105) is also replaced bys0(x,y). In the cases
of the combinations of relatively smalla and largeb, the
system does not reach its steady state withint5105. Results
of such systems are not available because of too long si
lation time.

We assumed that a steady state landform decrease
height following a power-law function, Eq.~7!. This assump-
tion leads Eq.~9! that means the exponentg of Eq. ~7! de-
3-2
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pends only on the parametera. In Fig. 1 we present the time
evolution of average height̂h(x,y;t)& in log-log scale for
the cases ofa52.0. The average is taken over all sites in t
system. The lines are clear on straight lines with identi
slopes. This indicates that the assumption Eq.~7! holds and
the slope only depends on the parametera. The exponentg
of the decay is plotted against the parameterb in Fig. 2. The
result shows good agreement with the relation Eq.~9!. These
results show that our assumption Eq.~7! is reasonably satis
fied in the numerical simulations.

Since the assumption in the discussion has been chec
we expect the result of our discussion is valid. First we ch
the relation betweendh0(x,y) ands0(x,y). We set a thresh-
old heightht and extract sites (x,y) whereh0(x,y)>ht and
h0(x8,y8),ht hold. That is, we extract sites whose link
cross the contour line of heightht . We plot @dh0(x,y)#21

againsts0(x,y) for the extracted sites in log-log scale in Fi

FIG. 1. The time evolution of the average height^h(x,y;t)& in
the case ofa52.0 for various values ofb. The straight line shows
the slopeg51 by Eq.~9!. The time and the height in the numeric
simulations are dimensionless.

FIG. 2. The exponentg for various combinations of paramete
a and b. The dots show results by numerical simulations, and
lines show the expected values by Eq.~9! for eacha.
02710
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3. The threshold height is setht5^h0(x,y)&/2. The points are
roughly on a straight line whose slope shows the sca
exponenta. The exponents calculated by the least squ
method is collectively plotted againstb in Fig. 4 with the
result of the discussion Eq.~11!. The figure proves that the
scaling exponenta follows Eq. ~11!. In Fig. 5 we present
dh0(x,y)@s0(x,y)#a against height in log-log scale for th
cases ofa52.0. The data show power-law dependence
the height and the exponents of the power law are ident
to one another for variousb. The slope is very close to th
predicted value of 1/a. So, by calculating the slopes in Fig.
and Fig. 5, we can estimate the parametersa and b of the
landform evolution.

One of the simplest cases of landform evolution can
described by an equation

]h

]t
5c12c2“•J1c3¹2h, ~12!

e

FIG. 3. The plot of (dh0)21 againsts0 in the case ofa52.0 and
b51.0. The straight line shows the slopea51/2 by Eq.~11!. The
area and the height in the numerical simulations are dimension

FIG. 4. The exponenta for various combinations of paramete
a and b. The dots show results by numerical simulations, and
lines show the values by Eq.~11! for eacha.
3-3
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whereh is height,J is sediment flux by water flow, andc1 ,
c2 , c3 are constants, respectively@14#. The first term of the
right hand side of the equation is the tectonic uplift and
third term means the weathering of the surface of the land
our model we neglect the effect of the weathering. The s
ond term describes the erosion process by the water flow
the surface. In the case of a lattice model, it is reasonabl
construct a model so that the vector of the sediment trans
on a lattice site is trained to one of the nearest neighbor s
that has the lowest height among the nearest neighbor s
It is also reasonable to assume that the sediment in the

FIG. 5. The plots ofdh0s0
a againsth0 in the case ofa52.0. The

straight line shows the slopea2151/2 by Eq.~10!. The height, the
slope, and the area in numerical simulations are dimensionless
ta

f.
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is smoothly washed away without causing sedimentat
when the speed of erosion is slow. In this case the diverge
of the sediment flux on a site is simply given by the sedim
created on the site by water erosion. The creation of s
ment flux,dJ, is often assumed to be a power-law functio
of water flow intensity and local slope@14# such as

udJu5const3u¹huasb. ~13!

Under these conditions the erosion process in our mode
identical to the discretized version of the erosion proc
described by Eq.~12!.

Our lattice model was originally proposed as a minim
model of erosion to reproduce the statistical properties
river networks. Though the model is seemingly oversimp
fied, it describes the erosion process described by Eq.~12!.
With properly chosen parameters, it can reproduce morp
logical properties of landform formed by erosion process

The parameters that governs the erosion process af
the resulting landform in its shape, so, it is important
evaluate such parameters from real landforms. By
method presented in this paper, it is possible to determin
set of parameters enough to simulate the landform evolu
by analyzing data of an existent landform. By deducing
parameters from an observation, such as a digital eleva
map, we may be able to conduct more accurate predictio
the transformation of the landform. The analysis of digi
elevation maps in this direction is now under progress.

The author thanks Dr. Takayasu for useful discussio
This work was partly supported by the Japan Society for
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