PHYSICAL REVIEW E, VOLUME 64, 027103
Area-slope relation in a simple erosion model

Hajime Inaoka
Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-8656, Japan
(Received 8 March 2001; published 19 July 2p01

We discuss area-slope relation of a landform evolved by a simple lattice model of an erosion process.
Observing a steady state of the model, where river networks on the surface are stationary, we present the
relation between the power exponent of the area-slope relation and the parameters of the erosion process of the
model. We show how to determine the parameters of the erosion process from observations of landform by
making use of the area-slope relation. This method may be useful for morphological simulations of the
landforms.
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Since Mandelbrot’s discovery of the concept of fractalsnique to determine the parameters of the erosion process
[1], it has been recognized that there are many fractals in thigEom observations of landform by making use of the area-
nature. One of the typical examples of the fractal structureslope relation.
observed in the nature is a pattern of a river network. Many Our erosion model is defined on a two-dimensional lat-
years ago, even before the discovery of the concept of fradice. The model is composed of two elements assigned on
tals, the fractality of river networks has been recognized byach lattice sitex,y): the local height of the lantd(x,y;t)
hydrologists; the self-similarity of river networks was de- and the water flow intensity(x,y;t). For a given initial
scribed as Horton’s lawg2], and the self-affinity of indi- landform h(x,y;0) the evolution of the landform is per-
vidual river basins was formulated as Hack's 148]. In  formed by repeating the following procedures. The time is
recent years, the fractality of river networks has been considdiscretized in numerical simulations and the following pro-
ered as a problem of statistical physics, and its power law itedures form a time unit called time step.
the drainage basin area distribution has attracted many physi- (1) Rain fall. For each lattice sitex(y), the water flow
cists’ interest. So, physically motivated models of river net-intensitys(x,y;t) is increased by a constast.
work formation have been studied to explain the drainage (2) Water flow. The water flow intensity on the site,y),
basin area distribution: Sheidegger’s river mddgithat was  s(x,y;t), is transported to one of its nearest neighbor sites
studied by Takayasat al. as a model of a process of aggre- (x’,y’) that has the lowest value of the local height among
gation with injection[5], a model based on self-avoiding the nearest neighbor sites of the sitey(). The new water
random walk[6] that was originally proposed by Leopold flow intensity of the site X,y), s(x,y;t+1), is determined
and Langbeiri7], a model of water erosidi8,9], a minimum by the sum of the water flow intensity transported from the
energy dissipation mod¢lL0,11], and so on. nearest neighbor sites.

A system with fractality presents some power-law relation  (3) Water erosion. The height of the site,y), h(x,y;t),
of physical quantities in general. In the case of the rivers decreased by the effect of the transportation of the water
networks, area-slope relation is one of the examples. Haclow intensitys(x,y;t). The new height is calculated by
and other investigators pointed out power-law relation be-

tween the drainage basin ar8and the mean slopéH of J(x,y;t)

h(x,y;t+1)=h(x,y;t) —Cdsh(x,y;t) (2

individual river basins such as 1+J(x,y;t)’
SHS*= const (1)  whereC is a constant andh(x,y;t) is the height difference
sh(x,y;t) =h(x,y;t) —h(x",y";t), 3

with a scaling exponent ranging 0.4-0.73,12,13. Will-
gooseet al. assumed a state of dynamic equilibrium of land-
form evolution, where the tectonic uplift and the erosion by
the water flow on the surface are balance, and explained the J(x,y;0)=[h(x,y;1) 12 s(x,y;)]°, (4)
relation of Eq.(1) by the effect of erosionnl4]. They also

showed that their numerical model of landform formationwherea andb are parameters governing the erosion process.
reproduced the relation, Eql). Sinclair and Ball also dis- Namely, our model describes a simplified water erosion
cussed the relation between the erosion process without eprocess with the effects of spatially and temporally uniform
fect of tectonic uplift and the area-slope relatidtb]. The rain fall, conservation of water, uniform geological structure
author and coworkers proposed a simple erosion model dff the land, etc. In the process of the water flow, procedure
river network formation to reproduce the power-law drainage(2), a lake is formed at the sitex{y) when h(x,y;t)
basin area distributiof®]. In this paper, we discuss the area- <h(x’,y’;t). But, in this paper, the formation of lakes is not
slope relation in our erosion model on a land with no tectoniamportant in the discussion. The details of the model are
uplift, and present the relation between the parameters in théiscussed in our previous pap¢gd. Numerical simulations
model and the scaling exponeat We also discuss a tech- in this paper are conducted on a triangular lattice of size

respectively, and is a water power defined by
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200x 200. The system is connected by a periodic boundaryhere shy(x,y) =hg(X,y) —ho(x',y") and sp(X,y) is the
condition in x direction. A line of sinks, where the local drainage basin area that is proportional to the water flow
height is zero and the water is completely drained, is placethtensity under the steady state, respectively. Since the time-
at y=0. On the other hand, a high wall is placed yat dependent parts of both the sides of E).should follow an
=200 to prevent the water in the system from flowing out ofidentical function form, we get

the system from the upper edge. All the water in the system

is eventually drained at the sink sites. The initial condition of 1

the systemrh(x,y;0) is set 2000.0 with a slight white noise Y a1 ©)
ranging 0.0-0.1. The parameters afe=10°> andC=0.5,
respectively. and
By drawing a link connectingx,y) and ’,y") for each
site, we get complex, branching river networks on the land Sho(X,y)[So(x,y)1”2=const<[hy(x,y)]¥2.  (10)

surface. Each link shows the path of the water transportation

on each site. Since the surface of the landform in the modé$tarting from a similar assumption to E€), Sinclair and
is always exposed to the effect of the erosion, it is natural td3all derived a similar relation to Eq10) and discussed an
expect that the link of a site often changes its direction as th@rea-slope relation in a vector forft5].

configuration of the height of the neighboring sites changes. The relation Eq(10) is similar to Eq.(1) and the scaling
However, it was shown that, after sufficiently long evolution €xponenta can be related to the parameters of erosion as
time, the system reaches to a kind of steady state where links

in the system hardly change their direction. Namely, a river _E
network hardly changes its shape while the surface of the “T 3
land is under the effect of the erosion. In this steady state,

because of the conservation of the water, the water flow inBut it means thatshg(x,y)[So(x,y)]?® is constant only
tensity s(x,y;t) of a site ,y) becomes proportional to the when it is observed on a contour line of specific height,
drainage basin area of the sit&,y), where the drainage becausd hy(x,y)]"* appears in the right side of E¢10).
basin area is defined by the number of the upstream links ofhis may be considered as a drawback of @®). However,
the site &,y). We discuss the area-slope relation of the riverwhen we attempt to determine the parameteasidb of the

11)

basins in this steady state. evolution equation by observing an existent landform, Eqg.
SinceJ/(1+J) can be approximated tbwhenJis small,  (10) is useful. By observinghy(x,y) andsy(x,y) on a spe-
Eq. (2) with the effect of the tectonic uplift can be rewritten cific contour line, we can calculate the scaling exponent
as =h/a. Once we get the scaling exponenive can calculate
the left side of Eq.(10) at any point on the surface of the
an(x,y;t) a b land. And it is a power-law function of the height with ex-
5~ oy O Ps(xy O T, (5 ponent 14. So, by these two exponents=b/a and 14, we

can get the full set of the parameters of the landform evolu-

When there is no tectonic uplift, we expect that the height oil'on aandb._Though the_orlgmal area-slope relatlon, £,
can determine the scaling exponenfrom observations of

the landform decreases monotonically. As we mentioned be: . . ;
fore, the system reaches to a steady state where river néf?al topographical data,_|t cannot fully determine the_ param-
works on the surface hardly change their shapes after lon ters (t)'f Ia?(:;orm evoluilon sw:jcbe the exponenbnly gives
evolution time even under the effect of the erosion process. € ratio of the parametéesandp.

So, we assume that the landformfx,y;t) under a steady b Hereaft_er,lwg cr;et(?k thelvatl;]d'tX( (I)If th_e ak()que d|s_cu33|on
state is described by y numerical simulations. In the following discussion, we

perform numerical simulations for various combinations of
e the parameters and b. The ranges of the parameters are
h(xy:t) =f(D)ho(x.y), ©) 1.5<a<3.0 and 0.5b=2.0, respectively. The numerical
, ) ) i o data in the following discussion are, for the most part, the
wheref(t) is a monotonically decreasing function with time aquits of the simulations with ¥Gime steps. For systems

and ho(x,y) is a time-independent, spatial function. Sinceyith most of the combinations of the parameters, the evolu-
the river networks on the surface are determined only by thgq 1 timet=10F is long enough to reach their steady states.
functioq ho(X,y), no I'ink change:'s its direction by the effect |, ¢,ch cases we can regdrtk,y; 10°) asho(x,y) by prop-
of erosion unde_r this assumption. We further assume thg”y adjusting the coefficient in Eq7). The water flow in-
form of the functionf(t) as tensity s(x,y;10°) is also replaced bgy(x,y). In the cases
B of the combinations of relatively smad and largeb, the
f()=ct™? () system does not reach its steady state witkii0°. Results
of such systems are not available because of too long simu-
with a constant and a constant exponemt Substituting Eq.  |ation time.
(6) and Eq.(7) into Eq. (5), we get We assumed that a steady state landform decreases its
height following a power-law function, Eq7). This assump-
t=7 hy(x,y) =const< t ~27 Shy(x,y) 13 so(X,y)]°, (8)  tion leads Eq(9) that means the exponenmtof Eq. (7) de-
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FIG. 1. The time evolution of the average heigh(x,y;t)) in FIG. 3. The plot of h,) ~* againsts, in the case o&=2.0 and
the case of=2.0 for various values db. The straight line shows b=1.0. The straight line shows the slope=1/2 by Eq.(11). The
the slopey=1 by Eq.(9). The time and the height in the numerical area and the height in the numerical simulations are dimensionless.
simulations are dimensionless.
3. The threshold height is sk{={hy(x,y))/2. The points are

pends only on the parametarin Fig. 1 we present the time roughly on a straight line whose slope shows the scaling

evolution of average heighih(x,y;t)) in log-log scale for ~€xponenta. The exponents calculated by the least square

the cases oh=2.0. The average is taken over all sites in themethod is collectively plotted againbtin Fig. 4 with the

system. The lines are clear on straight lines with identicaresult of the discussion Eq11). The figure proves that the

slopes. This indicates that the assumption &jy.holds and scaling exponentr follows Eq. (11). In Fig. 5 we present

the slope only depends on the parametethe exponenty  Sho(X,Y)[So(X,y)]* against height in log-log scale for the

of the decay is plotted against the paraméter Fig. 2. The cases ofa=2.0. The data show power-law dependence on

result shows good agreement with the relation @j. These  the height and the exponents of the power law are identical

results show that our assumption Ed) is reasonably satis- t0 one another for various. The slope is very close to the

fied in the numerical simulations. predicted value of H. So, by calculating the slopes in Fig. 3
Since the assumption in the discussion has been checke@ld Fig. 5, we can estimate the paramete@ndb of the

we expect the result of our discussion is valid. First we checkandform evolution.

the relation betweeshy(x,y) andsy(x,y). We set a thresh- On_e of the simples’g cases of landform evolution can be

old heighth, and extract sitesx(y) wherehy(x,y)=h, and  described by an equation

ho(x",y’)<h; hold. That is, we extract sites whose links

cross the contour line of heigti,. We plot[ sho(x,y)] ™! Jh

againstsy(x,y) for the extracted sites in log-log scale in Fig. Ezcl—CZV-\HcSVzh, (12)
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FIG. 2. The exponeny for various combinations of parameters FIG. 4. The exponent for various combinations of parameters
a andb. The dots show results by numerical simulations, and thea andb. The dots show results by numerical simulations, and the
lines show the expected values by E§). for eacha. lines show the values by E¢ll) for eacha.
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t T is smoothly washed away without causing sedimentation
I | when the speed of erosion is slow. In this case the divergence
10° ¢ ] of the sediment flux on a site is simply given by the sediment
102 b b created on the site by water erosion. The creation of sedi-
3 . ment flux, 6J, is often assumed to be a power-law function
10tk ] of water flow intensity and local slodd 4] such as
St . | 63| = constx |V h|3sP. (13
) ]
1071 M ° b=15 - Under these conditions the erosion process in our model is
102F e Z Z:l)g E identical to the discretized version of the erosion process
Foe RS described by Eq(12).
o3t v v v Our lattice model was originally proposed as a minimal
107* 1072 107! 10° 10' 10* 10 10* model of erosion to reproduce the statistical properties of
river networks. Though the model is seemingly oversimpli-
hO fied, it describes the erosion process described by(Ez).

With properly chosen parameters, it can reproduce morpho-

logical properties of landform formed by erosion process.
The parameters that governs the erosion process affects

the resulting landform in its shape, so, it is important to

. . . . evaluate such parameters from real landforms. By our

whereh is height,J is sediment flux by water flow, anh , method presented in this paper, it is possible to determine a

C2, C3 are constants, respectivelly4]. The first term of the set of parameters enough to simulate the landform evolution

right hand side of the equation is the tectonic uplift and theby analyzing data of an existent landform. By deducing the

third term means the weathering of the surface of the land. "barameters from an observation, such as a digital elevation

our model we neglect the effect of the weathering. The Secr'nap, we may be able to conduct more accurate prediction of

ond term describes the erosion process by_the water flow %e transformation of the landform. The analysis of digital
the surface. In the case of a lattice model, it is reasonable t8|evation maps in this direction is now under progress

construct a model so that the vector of the sediment transport
on a lattice site is trained to one of the nearest neighbor sites The author thanks Dr. Takayasu for useful discussions.
that has the lowest height among the nearest neighbor siteghis work was partly supported by the Japan Society for the
It is also reasonable to assume that the sediment in the floRromotion of Science.

FIG. 5. The plots ofshgsy againsth, in the case o= 2.0. The
straight line shows the slope 1=1/2 by Eq.(10). The height, the
slope, and the area in numerical simulations are dimensionless.
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